Sistema de Captura para la Imitación del Movimiento Humano por un Robot Planar de Base Fija

Diego Alberto Bravo Montenegro, Carlos Felipe Rengifo Rodas

Resumen


En este trabajo se  muestra la implementación de un sistema de captura de movimiento de bajo costo, utilizando Kinect \texttrademark, para la imitación de movimiento en el plano frontal mediante un robot planar de base fija. Se hizo un estudio de la cinemática inversa para mapear el movimiento humano con las coordenadas cartesianas $(x,y,z)$ que entrega el sensor y transformarlas en coordenadas articulares $(q_1,q_2,\ldots,q_9)$ que son las posiciones angulares de referencia para el robot. Estas trayectorias de referencia se utilizaron para imitar el movimiento humano por medio de un robot planar de nueve grados de libertad.

Palabras clave


Captura de movimiento, Kinect, Robot, Modelos biomecánicos.

Citas


Referencias

S. Albretch, K. Ramíres, F. Ruiz, D. Weikersdorfer, M. Leibold, M. Ulbrich, and M. Beetz,“Imitating human reaching motions using physically inspired optimization principles, in 11th IEEE-RAS International Conference on Humanoid Robots, 2011.

A. Nakazawa, S. Nakaoka, K. Ikeuchi, and K. Yokoi, “Imitating human dance motions through motion structure analysis,” in IEEE International Conference on Robotics and Automation, vol. 3, 2002, pp. 2539 – 2544.

S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa, and K. Ikeuchi, “Generating whole body motions for a biped humanoid robot from captured human dances,” in IEEE International Conference on Robotics and Automation, vol. 3, sept. 2003, pp. 3905 – 3910.

K. Munirathinam, S. Sakkay, and C. Chevallereau, “Dynamic motion imitation of two articulated systems using nonlinear time scaling of joint trajectories,” in International Conference on Intelligent Robots and Systems (IROS), Algarve, Portugal, May-June 2012.

K. Hu, C. Ott, and D. Lee, “Online human walking imitation in task and joint space based on quadratic programming,” in Robotics and Automation (ICRA), 2014 IEEE International Conference on, June 2014, pp. 3458–3464.

A. Menache, Understanding motion capture for computer animation, 2nd ed. Elsevier, 2011.

V. Ivancevic and T. Ivancevic, Human-Like Biomechanics: A Unified Mathematical Approach to Human Biomechanics and Humanoid Robotics, ser. Intelligent Systems, Control and Automation: Science and Engineering, v. 28. Springer, 2008.

A. Cappozzo, A. Cappello, U. d. Croce, and F. Pensalfini, “Surface-marker cluster design criteria for 3-d bone movement reconstruction,” in Biomedical Engineering, 1997.

J. P. Holden, J. A. Orsini, K. L. Siegel, T. M. Kepple, L. H. Gerber, and S. J. Stanhope, “Surface movement errors in shank kinematics and knee kinetics during gait,” Gait & Posture, vol. 5, no. 3, pp. 217 – 227, 1997.

C. Reinschmidt, A. van den Bogert, B. Nigg, A. Lundberg, and N. Murphy, “Effect of skin movement on the analysis of skeletal knee joint motion during running,” Journal of Biomechanics, vol. 30, pp. 729–732, 1997.

C. D. Mutto, P. Zanuttigh, and G. M. Cortelazzo, Time-of-Flight Cameras and Microsoft Kinect(TM). Springer Publishing Company, Incorporated, 2012.

G. Du, P. Zhang, J. Mai, and Z. Li., “Markerless kinect-based hand tracking for robot teleoperation.” International Journal of Advanced Robotic Systems, 2012.

L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, “Human skeleton tracking from depth data using geodesic distances and optical flow,” Image and Vision Computing, vol. 30, no. 3, pp. 217 – 226, 2012.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,”Kinect-fusion: Real-time 3d reconstruction and interaction using a moving depth camera,” in Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, ser. UIST ’11. New York, NY, USA: ACM, 2011, pp. 559–568.

R. A. Clark, Y.-H. Pua, K. Fortin, C. Ritchie, K. E. Webster, L. Denehy, and A. L. Bryant, “Validity of the microsoft kinect for assessment of postural control,” Gait & Posture, vol. 36, no. 3, pp. 372 – 377, 2012.

A. Schmitz, M. Ye, R. Shapiro, R. Yang, and B. Noehren, “Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system,” Journal of Biomechanics, vol. 47, no. 2, pp. 587 – 591, 2014.

B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier, and L. Rochester, “Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease,” Gait & Posture, vol. 39, no. 4, pp. 1062 – 1068, 2014.

R. A. Clark, K. J. Bower, B. F. Mentiplay, K. Paterson, and Y.-H. Pua, “Concurrent validity of the microsoft kinect for assessment of spatiotemporal gait variables,” Journal of Biomechanics, vol. 46, no. 15, pp. 2722 – 2725, 2013.

K. Khoshelham, “Accuracy analysis of kinect depth data,” in Remote Sensing and Spatial Information Sciencies, vol. XXXVIII, August 2011.

R. El-laithy, J. Huang, and M. Yeh, “Study on the use of microsoft kinect for robotics applications,” in Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION, April 2012, pp. 1280–1288.

W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, 2nd ed., ser. Kogan Page Science. Paris, France: Butterworth Heinemann, 2004.

C. D. Boor, A Practical Guide to Splines. Springer, 2001.

A. de la Escalera Hueso., Vision por computador. Fundamentos y metodos. Prentice Hall., 2001.

D. Baird, Experimetacion. Una Introducción a la Teoria de las Mediciones y al Diseño de Experimentos. Prentice Hall, 1991.


Texto completo: PDF

Refbacks

  • No hay Refbacks actualmente.


Perfil de la revista en Google Scholar

Universidad Antonio Nariño - Sede Circunvalar

Carrera 3 Este No 47 A - 15, Bloque 4, Piso 3

Bogotá, Colombia

Revista afiliada a la Red Colombiana de Revistas de Ingeniería e indexada en EBSCO, ULRICHSWEB, DOAJ y Publindex - categoría C.

ISSN 2145-0935 ISSN online: 2346-1446